林荣荣老师受邀进行讲座
发布时间: 2021-08-08 09:19:00
题 目:Multi task Learning in Vector valued Reproducing Kernel Banach Spaces with the l1 Norm
报 告 人:林荣荣讲师 广东工业大学
时 间:2021-08-07 16:00--17:00
地 点:一课东201
报告人简介:
林荣荣老师于2017年6月在中山大学数学学院取得博士学位。博士期间作为科研助理曾访问加拿大阿尔伯特大学一年。现任广东工业大学讲师,已在机器学习核函数方法和时频分析研究领域发表多篇论文。
摘 要:
Targeting at sparse multi-task learning, we consider regularization models with an l1 penalty on the coefficients of kernel functions. In order to provide a kernel method for this model, we construct a class of vector-valued reproducing kernel Banach spaces with the l1 norm. The notion of multi-task admissible kernels is proposed so that the constructed spaces could have desirable properties including the crucial linear representer theorem. Such kernels are related to bounded Lebesgue constants of a kernel interpolation question. We study the Lebesgue constant of multi-task kernels and provide examples of admissible kernels. This is a joint work with Prof. Guohui Song (ODU) and Haizhang Zhang (SYSU).