教育经历
● 2007/08–2012/05, 美国伊利诺理工大学(Illinois Institute of Technology),应用数学, 博士(Doctor of Philosophy),
导师:Gregory E. Fasshauer教授,研究方向:核函数逼近方法(kernel-based approximation method)。
● 2006/09–2007/07, 华南师范大学, 计算数学, 硕士研究生,
导师:黄力人教授,研究方向:非光滑分析(nonsmooth analysis)。
● 2002/09–2006/07, 华南师范大学, 信息与计算科学, 学士,
毕业论文导师:黄力人教授。
工作经历
● 2016/12–至今,华南师范大学,数学科学学院,博士生导师。
● 2016/07–至今,华南师范大学,机器学习与最优化计算实验室,主任。
● 2016/01–至今,华南师范大学,数学科学学院,教授。
● 2015/06–2015/12,香港浸会大学,数学系,研究员。
● 2012/08–2015/05,美国雪城大学(Syracuse University),数学系,博士后(讲师),合作导师:许跃生教授。
● 2007/08–2012/05,美国伊利诺理工大学(Illinois Institute of Technology),应用数学系,教学科研助教。
研究方向
● 逼近论及其在机器学习与数据分析中的应用
● 核函数逼近方法、无网格方法
● 支持向量机、人工神经网络
● 非光滑分析、凸分析
● 医疗大数据分析、精准医疗
● 教育大数据分析、智能教育
科研项目
● 第十二批国家海外高层次人才引进计划青年项目入选者。
● 国家自然科学基金青年基金(11601162),2017-2019年,主持。
● 广东省教育厅广东高校重大科研项目(特色创新项目,2017KTSCX053),2018-2019年,主持。
● 广东省自然科学基金面上项目(2019A1515011995),2019-2022年,主持。
● 广东省粤港澳应用数学中心项目(2020B1515310013),2020-2021年,参与。
● 国家自然科学基金重点项目(11931003),2020-2024年,主要参与。
● 国家自然科学基金面上项目(12071157),2021-2024年,主持。
● 国家自然科学基金天元数学专题讲习班项目(12026426),2021年,参与。
● 国家自然科学基金数学天元基金“数学与医疗健康交叉重点专项”(12026602),2021-2024年,数学负责人(项目双负责人制)。
● 广东省普通高校重点领域专项(新一代信息技术,2020ZDZX3004),2021-2023年,主持。
● 第八批国家高层次人才特殊支持计划科技创新领军人才项目入选者。
学术奖励
● Sigma Xi Award in recognition of the outstanding accomplishments in research and scholarship, 美国Sigma Xi科学荣誉学会, 2012.
● Karl Menger Student Award, Illinois Institute of Technology, 2012.
期刊论文(SCI)
● Mo, Mingyu, Ye, Qi (通讯作者), Splitting method for support vector machine with lower semicontinuous loss, Pacific Journal of Optimization, 2023, 19 (4), pp 689-714.
● Chen, Huixiong, Ye, Qi (通讯作者), Composite optimization algorithms for Sigmoid networks, Neural Computation, 2023, 35 (9), pp 1543-1565.
● Chen, Qijing, Ye, Qi, Zhang, Weiqi, Li, He, Zheng, Xiaoning, TGM-Nets: A deep learning framework for enhanced forecasting of tumor growth by integrating imaging and modeling, Engineering Applications of Artificial Intelligence, 2023, 126 (A), 106867.
● Ye, Qi (独立完成), Positive definite multi-kernels for scattered data interpolations, Applied and Computational Harmonic Analysis, 2023, 62 (1), pp 251-260.
● Lin, Ying , Wei, Yimin, Ye, Qi (通讯作者), A homotopy method for multikernel-based approximation, Journal of Nonlinear and Variational Analysis, 2022, 6 (2), pp 139-154.
● Huang, Liren , Liu, Chunguang Tan, Lulin, Ye, Qi (通讯作者), Generalized representer theorems in Banach spaces, Analysis and Applications, 2021, 19 (1), pp 125-146.
● Ye, Qi (独立完成), Kernel-based probability measures for generalized interpolations: A deterministic or stochastic problem? Journal of Mathematical Analysis and Applications, 2019, 477 (1), pp 420-436.
● Ye, Qi (独立完成), Kernel-based probability measures for interpolations, Applied and Computational Harmonic Analysis, 2019, 47 (1), pp 226-234.
● Xu, Yuesheng, Ye, Qi (通讯作者), Generalized Mercer kernels and reproducing kernel Banach spaces, Memoirs of the American Mathematical Society, 2019, 258 (1243), pp 1-122.
● Ling, Leevan, Ye, Qi (通讯作者), On meshfree numerical differentiation, Analysis and Applications, 2018, 16 (5), pp 717-739.
● Ye, Qi (独立完成), Optimal designs of positive definite kernels for scattered data approximation, Applied and Computational Harmonic Analysis, 2016, 41 (1), pp 214–236.
● Fasshauer, Gregory E., Hickernell, Fred J., Ye, Qi (通讯作者), Solving support vector machines in reproducing kernel Banach spaces with positive definite functions, Applied and Computational Harmonic Analysis, 2015, 38 (1), pp 115-139.
● Ye, Qi (独立完成), Approximation of nonlinear stochastic partial differential equations by a kernel-based collocation method, International Journal of Applied Nonlinear Science, 2014, 1 (2), pp 156-172.
● Fasshauer, Gregory E., Ye, Qi (通讯作者), Reproducing kernels of Sobolev spaces via a Green kernel approach with differential operators and boundary operators, Advances in Computational Mathematics, 2013, 38 (4), pp 891-921.
● Cialenco, Igor, Fasshauer, Gregory E., Ye, Qi (通讯作者), Approximation of stochastic partial differential equations by a kernel-based collocation method, International Journal of Computer Mathematics, 2012, 89 (18), pp 2543-2561.
● Fasshauer, Gregory E., Ye, Qi (通讯作者), Reproducing kernels of generalized Sobolev spaces via a Green function approach with distributional operators, Numerische Mathematik, 2011, 119 (3), pp 585-611.
期刊论文(EI)
● Lin, Ying, Ye, Qi (通讯作者), Support vector machine classifiers by non-Euclidean margins, Mathematical Foundations of Computing, 2020, 38 (4), pp 279-300.
● Lin, Ying, Lin, Rongrong, Ye, Qi (通讯作者), Sparse regularized learning in the reproducing kernel banach spaces with the ℓ1 norm, Mathematical Foundations of Computing, 2020, 3 (3), pp 205-218.
● Li, Zheng, Yuesheng, Xu, Ye, Qi, Sparse support vector machines in reproducing kernel Banach spaces, Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan, Editors: Josef Dick, Frances Y. Kuo, Henryk Woźniakowski, Springer, pp 869-887, Cham, 2018.
● Ye, Qi (独立完成), Kernel-based approximation methods for partial differential equations: deterministic or stochastic problems?, Approximation Theory XV: San Antonio 2016, Editors: Gregory E. Fasshauer, Larry L. Schumaker, Springer, pp 375-398, Cham, 2017.
● Ye, Qi (独立完成), Generalizations of kriging methods in spatial data analysis, Meshfree Methods for Partial Differential Equations VIII, Editors: Michael Griebel, Marc Alexander Schweitzer, Springer, pp 145-166, Germany, 2017.
● Ye, Qi (独立完成), Solving support vector machines in reproducing kernel Hilbert spaces versus Banach spaces, Approximation Theory XIV: San Antonio 2013, Editors: Gregory E. Fasshauer, Larry L. Schumaker, Springer, pp 377-395, Switzerland, 2014.
● Fasshauer, Gregory E., Ye, Qi (通讯作者), A kernel-based collocation method for elliptic partial differential equations with random coefficients, Monte Carlo and Quasi-Monte Carlo Methods 2012, Editors: Josef Dick, Frances Y. Kuo, Gareth W. Peters, Springer, pp 331-347, Germany, 2013.
● Fasshauer, Gregory E., Ye, Qi (通讯作者), Kernel-based collocation methods versus Galerkin finite element methods for approximating elliptic stochastic partial differential equations, Meshfree Methods for Partial Differential Equations VI, Editors: Michael Griebel, Marc Alexander Schweitzer, Springer, pp 155-170, Germany, 2012.
发明专利
● 融合多路径特征与器官形态导向的胰腺CT图像配准方法,发明人:叶颀,陈文善,朱致鹏,方驰华,专利号:ZL202310755028.5,专利权人:华南师范大学,2023.
● 一种基于解码层损失回召的医学影像分割方法及系统,发明人:叶颀,陈家炜,方驰华,专利号:ZL202310403445.3,专利权人:华南师范大学,2023.
● 一种用于CT增强图像的血管自动分割方法,发明人:叶颀,杨坦,周洁仪,刘咏仪,方驰华,专利号:ZL202310343462.2,专利权人:华南师范大学,2023.
● 基于Boosting-Unet分割网络的医学影像分割方法,发明人:叶颀,温利辉,陈家炜,方驰华,专利号:ZL202210502143.7,专利权人:华南师范大学,2022.
● Medical Image Segmentation Method based on Boosting-Unet Segmentation Network,发明人:叶颀,温利辉,陈家炜,方驰华,专利号:HK40067531,专利权人:华南师范大学,2022.
学术会议组织
● International Conference of Kernel-based Approximation Methods in Data Analysis(核函数逼近方法在数据分析中应用国际会议),2018年5月25-27日,广州市,广东省,中国。
● International Conference of Kernel-Based Approximation Methods in Machine Learning(核函数逼近方法在机器学习中应用国际会议),2017年5月19-21日,广州市,广东省,中国。
● SIAM Student Chapter Conference 2011 (IIT SIAM 2011): Recent Advancesin Computational Science and Statistics(SIAM学生协会学术会议),2011年10月29-30日,Chicago, IL,美国。
学术邀请报告
● Machine learning in Banach spaces: a black-box or white-box method? (分组报告),the 10th International Congress on Industrial and Applied Mathematics(第10届工业与应用数学国际大会),2023年8月20-25日,Tokyo,日本。
● Machine learning in Banach spaces: a black-box or white-box method? (大会报告),第4届数学与人工智能国际会议,2022年12月16-18日,北京,中国。
● Machine learning in Banach spaces: a black-box or white-box method? (45分钟特邀报告),第9届世界华人数学家大会,2022年7月31日-8月5日,南京,中国。
● Kernel-based probability measures for data analysis: a deterministic or stochastic problem?(特邀报告),中国工业与应用数学学会第十六届年会,2018年9月13-16日,成都,中国。
● Kernel-based approximation methods for generalized interpolations: a deterministic or stochastic problem?, Curves and Surfaces 2018(2018曲线与曲面国际会议),2018年6月28日-7月4日,Arcachon,法国。
● Tutorial of kernel-based approximation methods(特邀报告),天津大学,2017年6月10日,天津市,中国。
● Reproducing kernel Banach spaces for nonlinear approximation, the VII Jaen Conference on Approximation Theory(第7届哈恩逼近论会议),2016年7月3-8日,Ubeda, Jaen,西班牙。
● Numerical differentiation by kernel-based probability, the 15th International Conference Approximation Theory(第15届逼近论国际大会),2016年5月22-25日,San Antonio, TX, 美国。
● Kernel-based methods for deterministic or stochastic data(特邀报告),中山大学,2015年5月25日,广州市,广东省,中国。
● Kernel-based approximation method and its application(特邀报告),Cornell University (康奈尔大学),2014年4月7日,Ithaca, NY,美国。
● Kernel-based approximation method and its application(特邀报告), University of Missouri-St. Louis (密苏里大学圣路易斯分校), 2014年3月21日,St. Louis, MO,美国。
● Solving support vector machines in reproducing kernel Banach spaces with Matern functions, the 14th International Conference Approximation Theory (第14届逼近论国际大会),2013年4月7-10日,San Antonio, TX,美国。
● Approximation of stochastic partial differential equations by a kernel-based collocation method, the 10th International Conference on Monte Carlo and Quasi-Monte Carlo Methods(第10届蒙特卡洛和拟蒙特卡洛国际会议), 2012年2月13-17日,Sydney,澳大利亚。
● Approximation of nonlinear partial differential equations by Gaussian processes via Matern functions, the 7th International Congress on Industrial and Applied Mathematics(第7届工业与应用数学国际大会),2011年7月18-22日,Vancouver, BC,加拿大。
● Approximation of stochastic partial differential equations by a kernel-based collocation method, the 6th International Workshop on Meshfree Methods for Partial Differential Equations(第6届偏微分方程无网格方法国际研讨会),2011年10月4-6日,Bonn,德国。
● Approximation of linear partial differential equations by Gaussian processes via Matern functions, 2010 SIAM Annual Meeting(2010年SIAM年会),2010年7月12-16日,Pittsburgh, PA,美国。
● A Green function approach to (conditionally) positive definite functions and reproducing kernels of generalized Sobolev spaces, the 13th International Conference on Approximation Theory (第13届逼近论国际大会),2010年3月7-10日,San Antonio, TX,美国。
地址:广东省广州市天河区中山大道华南师范大学数学科学学院4楼414室510631
电话:+86-20-85216655-8414
电邮:yeqi@m.scnu.edu.cn